Chevron Left
Retour à Supervised Machine Learning: Regression and Classification

Avis et commentaires pour d'étudiants pour Supervised Machine Learning: Regression and Classification par

1,891 évaluations

À propos du cours

In the first course of the Machine Learning Specialization, you will: • Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn. • Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. In this beginner-friendly program, you will learn the fundamentals of machine learning and how to use these techniques to build real-world AI applications. This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field. This 3-course Specialization is an updated and expanded version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start....

Meilleurs avis


16 juil. 2022

It is the Best Course for Supervised Machine Learning!

Andrew Ng Sir has been like always has such important & difficult concepts of Supervised ML with such ease and great examples, Just amazing!


4 juil. 2022

Andrew Ng is the best proctor for Machine Learning. The course has been perfectly balanced with thoritical as well as practical aspects. After this course I feel so confident. From ZERO to HERO

Filtrer par :

351 - 375 sur 494 Avis pour Supervised Machine Learning: Regression and Classification

par Pablo G

24 juil. 2022

Great introduction to machine learning.

par Anton B

6 juil. 2022

I​nformative, clear, and very exciting!

par Johannes K

11 août 2022

T​he best machine learning course ever

par Alaa S A E F

14 juil. 2022

g​ood content and excellent instructor

par Karn T

9 juil. 2022

Good Course with Python Implementation

par emirhan e

7 août 2022

Thanks for this precious oppurtinity.

par Carlo D

26 juil. 2022

best intro course to machine learning

par Anush R A

12 juil. 2022

best course to learn machine learning

par Daniel A

11 juil. 2022

Course very well executed. Thank you.

par Sayed M

10 juil. 2022

Thank you all for this amazing Course

par 黄金

6 juil. 2022

The lab part of the course is amazing

par Yuhao W

4 juil. 2022

better than before, with python coded

par Gorgui B M

1 juil. 2022

Great professor and exellent content!

par Henrik S

27 juin 2022

I​t was everything I wanted it to be!

par Fateh M

31 juil. 2022

Perfect, as expected from Andrew. Ng

par Md. R H

10 juil. 2022

Very effective and wonderful course.

par Banriskhem K

9 juil. 2022

Programming assignments are too easy

par Amir-Ali M

30 juil. 2022

P​henominal course for entering AI.

par Hasibul H

18 juil. 2022

O​ne of the best course of Coursera

par Xinyue L

14 juil. 2022

A​ really good high level overview!

par Julio A L C

6 août 2022

Lovely course, I learned so much!

par Birhanu G

2 août 2022

Best course for machine learning.

par Syed A n

24 juil. 2022

Very Clear and in depth learning.

par Hardy W

21 juil. 2022

pretty straightforward and clear!

par Zaid R

23 juil. 2022