Chevron Left
Retour à Apprentissage automatique

Avis et commentaires pour l'étudiant pour Apprentissage automatique par Université de Stanford

4.9
119,800 notes
29,407 avis

À propos du cours

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas....

Meilleurs avis

EJ

Mar 27, 2018

Very well structured and delivered course. Progressive introduction of concepts and intuitive description by Andrew really give a sense of understanding even for the more complex area of the training.

RK

Aug 20, 2019

It is the best online course for any person wanna learn machine learning. Andrew sir teaches very well. His pace is very good. The insights which you will get in this course turns out to be wonderful.

Filtrer par :

1 - 25 sur 28,528 Examens pour Apprentissage automatique

par Rishav S

Jan 18, 2019

It would be better if it would have been done in Python

par Robert G C J

Aug 11, 2018

Overall the course is great and the instructor is awesome. Machine learning is fascinating and I now feel like I have a good foundation. A few minor comments: some of the projects had too much helper code where the student only needed to fill in a portion of the algorithm. I would have preferred to have worked through more of the code. Also, there were a few times when the slides didn't contain the complete equations so it was difficult to piece it all together when writing the code. Lastly, I wish that there was more coverage on vectorized solutions for the algorithms.

par Murali N

Jun 15, 2016

Excellent starting course on machine learning. Beats any of the so called programming books on ML. Highly recommend this as a starting point for anyone wishing to be a ML programmer or data scientist.

par Vasily

Apr 07, 2019

I've never expected much from an online course, but this one is just Great!

Even if you feel like you have gaps in your calculus/linear algebra training don't be afraid to take it, because you'll be able to fill most of those right from the course material or at least figure out where to look.

This course gives grand picture on how ML stuff works without focusing much on the specific components like programming language/libraries/environment which most of ML courses/articles suffer from.

This leaves you with freedom to pick it yourself and apply gained knowledge however you want.

Biggest takeaway for me as a person working on my own project is amount of attention professor Ng brings to methods of evaluating your ML methods efficiency and how this correlates with time/effort you should put into the specific system component.

Because i feel like this is where most people slip up in practice.

Great thanks for all of that!

par Deleted A

Mar 18, 2017

This is an extremely basic course. Machine learning is built on mathematics, yet this course treats mathematics as a mysterious monster to be avoided at all costs, which unfortunately left this student feeling frustrated and patronized. So much time is wasted in the videos with arduous explanations of trivialities, and so little taken up with the imparting of meaningful knowledge, that in the end I abandoned the videos altogether. The quizes were basic (largely based on recall of, rather than application of knowledge), as were the programming assignments (nearly all of which were spoon-fed, with the tasks sometimes being simple as multiplying two matrices together).

If you are serious about machine learning and comfortable with mathematics (e.g. elementary linear algebra and probability), do yourself a favour and take Geoff Hinton's Neural Networks course instead, which is far more interesting and doesn't shy away from serious explanations of the mathematics of the underlying models.

par anhhuy

Nov 07, 2018

I am Vietnamese who weak in English. To learn this course I have to choose playback rate 0.75.

But the teacher - Professor Andrew Ng talks clearly and the way he transfer knowledge is very simple, easy to understand. Myself is excited on every class and I think I am so lucky when I know coursera.

This course provide a lot of basic knowledge for anyone who don't know machine learning still learn.

Once again, I would like to say thank to Professor Andrew Ng and all Mentor.

(I hope all of you understand my feeling because of my low level English, I cannot express it exactly)

par Pooritat T

Sep 01, 2018

Sub title should be corrected. Since I'm not that good in English but I know when there're mis-traslated or wrong sub title. If you fix this problems , I thin it helps many students a lot. Thanks!!!!!

par rajeev a

May 08, 2019

This course has of course (pun intended) built a formidable reputation for itself since it was laucnhed. I took the course in 2019 when it had been around for a few years and so what I am saying here may resonate with a lot of people who have taken the course before me. "Concretely"(!), Prof Ng takes the student on a very well structured journey that covers the vast canvas of ML, explaining not just the theoretical aspects but also laying equal empahsis on the pratical aspets like debugging or choosing the right approach to solving a ML problem or deciding what to do first / next. At that level this course is highly recomended by me as the first course in ML that anyone should take. I do have a suggestion to make regarding how some of the portions could have been explained more lucidly. These are portions that pertain entirely to the mathematics and programming problems, where I struggled for days and (for back propogation) for months before realising that maybe the explanation given in the slide wasn't clear enough and at times i just needed to try really random ideas to get out of the programmin rut that I was stuck in. An advise for anyone doing the course would be to write down the matrices in full detail and do the transformations of cost fucntion and gradient descent or back prop using pen and paper and attempt to write the code for it only after once one is clear about the exact mathematical operation happening. Thank you, Prof Ng for gifting this course to the online learners community and I would also like to thank the mentors who have replied to the queries patiently while stadfastly enforcing the honour code.

par Имильбаев Р Р

Dec 25, 2018

It would be ideal course if instead of octave pyhon or r is used

par Olga K

Apr 18, 2018

You need to know, what do you want to get out of this course. It gives you a lot of information, but be prepared to work hard with linear algeabra and make efforts to compute things in Mathlab/Octave.

par Fadi

Apr 15, 2019

I just started week 3 , I have to admit that It is a good course explaining the ideas and hypnosis of machine learning . The instructor takes your hand step by step and explain the idea very very well.

The thing is, there is no practical example and or how to apply the theory we just learned in real life.

This course in to understand the theories , not to apply them.

For someone like me ( far away from Algebra) it is really not for me. Despite i want to learn the applied ML

par Mike L

Aug 19, 2017

Very helpful and easy to learn. The quiz and programming assignments are well designed and very useful. Thank Prof. Andrew Ng and coursera and the ones who share their problems and ideas in the forum.

par Rohit S

Aug 13, 2019

Andrew Ng is a great teacher.

He inspired me to begin this new chapter in my life. I couldn't have done it without you

and also He made me a better and more thoughtful person.

Thank You! Sir.

par Jason S

Jun 17, 2017

Everything is taught from basics, which makes this course very accessible- still requires effort, however will leave you with real confidence and understanding of subjects covered. Great teacher too..

par rudi

May 19, 2019

This is the best course I have ever taken. Andrew is a very good teacher and he makes even the most difficult things understandable.

A big thank you for spending so many hours creating this course.

par Bruno C

Nov 09, 2015

The course is ok but the certification procedure is a mess!

No statement of accomplishment and you have to retake all the assignments if you want the certificate and had not been verified ....

par Hou Z

May 05, 2019

Very good instruction for machine learning, and also very very good for new comers!!!

par JImmy C

May 19, 2019

I‘m a Chinese post-graduate student of Computer Sciense. This class is very useful to me because of it's amazing course videos and the well-designed programming exercises. It is really lucky to have this opportunity to find the course and to finish it. This class will be a footstone for further studying in AI field for anyone who just get started.

par Aditya K

May 18, 2019

It was a very helpful course.

par Anton D

Apr 24, 2019

Overall, this is a great course and I learned an enormous amount of information. The biggest issue I had was the disconnect between the course and the assignments/quizzes. Although they had help sections, because you couldn't ask direct questions about the algorithms/quizzes, if you had a problem, you were basically on your own. (At least that is what it felt like.) For example, if you missed a quiz question and couldn't figure out the answer, there seemed little recourse to find the actual answer. In a couple cases, I decided to just take the 80% on a quiz simply because I had no idea what the answer was.

par Nikhil J

May 18, 2019

It was a great learning experience. All the lectures were in details.

par Prateek J

Jan 21, 2019

Exceptional. Best course to start learning Machine Learning! Only one grouse though, the exercises are in Matlab and not in python.

par Prabhu N

May 28, 2019

Course content was awesome, gave me lot of insights. If assignments were in Python, it would have helped a lot to improve my skills. Anyways I would recommend this course to a beginner who wants to understand the logic behind the machine learning process. Thank You AndrewNg Sir!!!

par OMKAR K D

Mar 30, 2019

Explained well but I was not able to implement it on exercise.

So I switched to other webites .Now I am back here and realized the value of this course

par Kothala M K

May 18, 2019

Good Course