Chevron Left
Retour à Using Machine Learning in Trading and Finance

Avis et commentaires pour d'étudiants pour Using Machine Learning in Trading and Finance par New York Institute of Finance

317 évaluations

À propos du cours

This course provides the foundation for developing advanced trading strategies using machine learning techniques. In this course, you’ll review the key components that are common to every trading strategy, no matter how complex. You’ll be introduced to multiple trading strategies including quantitative trading, pairs trading, and momentum trading. By the end of the course, you will be able to design basic quantitative trading strategies, build machine learning models using Keras and TensorFlow, build a pair trading strategy prediction model and back test it, and build a momentum-based trading model and back test it. To be successful in this course, you should have advanced competency in Python programming and familiarity with pertinent libraries for machine learning, such as Scikit-Learn, StatsModels, and Pandas. Experience with SQL is recommended. You should have a background in statistics (expected values and standard deviation, Gaussian distributions, higher moments, probability, linear regressions) and foundational knowledge of financial markets (equities, bonds, derivatives, market structure, hedging)....

Meilleurs avis


16 déc. 2020

This the best online course I've ever joined, very practical, and could be able to implement in the real world with your own thoughts plus the hints from the course.


30 avr. 2020

This course was great!!! I think they skipped over a lot so it takes a lot of time to learn the details of the skills. But it definitely gives you the tools needed!

Filtrer par :

76 - 86 sur 86 Avis pour Using Machine Learning in Trading and Finance

par David G

21 juin 2022

par Chris C

17 mars 2021

par Brendan K

25 juil. 2022

par masoud g

16 févr. 2021

par Andrew H

19 avr. 2020

par Vinayak T

3 sept. 2021

par Ni P N K

26 juin 2020

par Russell K

19 juin 2020

par William L

25 mai 2022

par Red R

10 nov. 2022

par Alexander R

7 juin 2020