Chevron Left
Retour à Linear Regression in R for Public Health

Avis et commentaires pour d'étudiants pour Linear Regression in R for Public Health par Imperial College London

4.8
étoiles
440 évaluations

À propos du cours

Welcome to Linear Regression in R for Public Health! Public Health has been defined as “the art and science of preventing disease, prolonging life and promoting health through the organized efforts of society”. Knowing what causes disease and what makes it worse are clearly vital parts of this. This requires the development of statistical models that describe how patient and environmental factors affect our chances of getting ill. This course will show you how to create such models from scratch, beginning with introducing you to the concept of correlation and linear regression before walking you through importing and examining your data, and then showing you how to fit models. Using the example of respiratory disease, these models will describe how patient and other factors affect outcomes such as lung function. Linear regression is one of a family of regression models, and the other courses in this series will cover two further members. Regression models have many things in common with each other, though the mathematical details differ. This course will show you how to prepare the data, assess how well the model fits the data, and test its underlying assumptions – vital tasks with any type of regression. You will use the free and versatile software package R, used by statisticians and data scientists in academia, governments and industry worldwide....

Meilleurs avis

MK

3 avr. 2020

This is an excellent course to learn how to think statistically with respect to linear regression. The course covers a lot of materials and equips one to further explore this vast area.

PG

1 févr. 2021

This was a wonderful course, for many reasons, the best of which was I felt as if I was finally getting into a real-world data analysis situation. I recommend it highly.

Filtrer par :

51 - 75 sur 93 Avis pour Linear Regression in R for Public Health

par Lucy M

14 juin 2020

par Hernan P

1 janv. 2022

par Kathy V

30 août 2020

par Lau C C

25 janv. 2022

par Mostafizer R

7 juil. 2020

par Thomas J H

31 mars 2019

par Doruk C K

5 déc. 2020

par Nimmi P

29 juil. 2019

par Vance V

7 mai 2020

par Wael M O

13 mars 2022

par Jesús A O D

4 avr. 2020

par Mohammed S A

17 août 2022

par Noel J

10 juil. 2020

par Tanvir A

23 oct. 2021

par neil p

7 janv. 2020

par mazen j

21 nov. 2020

par Josef N

30 juin 2020

par Mohammed A E M D

28 avr. 2020

par Hamza M

25 oct. 2020

par Dr. M

16 mai 2020

par Enrique D O

20 mai 2019

par Jin C

8 juil. 2020

par Darija K

5 févr. 2020

par Anderson S

7 juin 2019

par Juan C M G

19 mars 2021