À propos de ce cours
4,961 consultations récentes

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau intermédiaire

Basic physics at undergraduate level

Approx. 14 heures pour terminer

Recommandé : 4 weeks of study with 5-8 hours/week...

Anglais

Sous-titres : Anglais

Ce que vous allez apprendre

  • Check

    You will learn the basic technology of particle accelerators.

  • Check

    You will understand the basic principles for how particles are accelerated, and how they can be guided.

  • Check

    You will learn about different ways to monitor the beam.

  • Check

    You will learn about vacuum: Why we need vacuum in accelerators; Where particles that give rise to pressure comes from; How one create vacuum

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau intermédiaire

Basic physics at undergraduate level

Approx. 14 heures pour terminer

Recommandé : 4 weeks of study with 5-8 hours/week...

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
4 heures pour terminer

RF-systems

This module is an introduction to the RF systems of particle accelerators. RF stand for radio frequency and indicates that the systems deal with electromagnetic waves with frequencies that are common for radio systems. The RF system generates electromagnetic waves and guides them down to cavities. The cavities are located along the beam pipe such that the particles pass through the cavities when they travel along the accelerator. When the waves enter the cavity they create as standing wave inside the cavity. it is the electric field of this standing wave that accelerates the particles. In the module we describe the amplifier, which generates and amplifies the electromagnetic waves. We describe different types of waveguides which transport the waves from the amplifier to the cavity. We also describe the most common types of cavities. Most of the system is described without equations but in the texts following the lectures you will find some of the theory for the RF-system.

...
14 vidéos (Total 36 min), 10 lectures, 15 quiz
14 vidéos
Outline of the RF-system1 min
Pill-box cavities5 min
Energy3 min
Coaxial waveguides2 min
Rectangular waveguides2 min
Computer simulations2 min
The circulator1 min
Introduction to RF-amplifiers2 min
The klystron4 min
General properties2 min
Drift tube linac (DTL)1 min
Elliptical cavity1 min
Traveling wave cavity2 min
10 lectures
Introduction10 min
Basic concepts 110 min
A mathematical description of the pillbox cavity10 min
A mathematical description of energy in cavities10 min
A mathematical description of the coaxial waveguide10 min
A mathematical description of rectangular waveguides10 min
More on the circulator10 min
Gain of amplifiers10 min
Drift tube Linac: example10 min
Elliptical cavity: example10 min
15 exercices pour s'entraîner
Quiz Introduction6 min
Outline of RF-system6 min
Pill-box cavities10 min
Energy6 min
Coaxial waveguides6 min
Rectangular waveguides2 min
Computer simulations4 min
Circulator4 min
Introduction to amplifiers6 min
The klystron8 min
General properties6 min
Drift tube linac4 min
Elliptical cavities6 min
Traveling wave cavity4 min
RF-systems: Graded test30 min
Semaine
2
1 heure pour terminer

Magnet technology for accelerators

This module is about the types of magnets that are used in particle accelerators. It introduces dipole magnets, quadrupole magnets, sextupole magnets and octupole magnets, and describe where these are needed and how they are designed. In the most common types of magnets, the magnetic field are produced by currents running in normal conducting wires. When large magnetic fields are required one use superconducting magnets and the module describe how these are designed. There are also cases when quite weakl magnetic fields are required and then one can use permanent magnets. This a green alternative since they have zero power consumption. The permanent magnets are also covered in this module.

...
4 vidéos (Total 27 min), 1 lecture, 5 quiz
4 vidéos
Fast ramp magnets4 min
Superconducting magnets6 min
Permanent accelerator magnets and insertion devices6 min
1 lecture
Magnetic circuits10 min
5 exercices pour s'entraîner
Basic concepts18 min
Fast ramped magnets10 min
Superconducting magnets6 min
Permanent magnets and insertion devices6 min
Magnet technology: Graded test
Semaine
3
3 heures pour terminer

Beam Diagnostics

In this module we describe how we can measure and monitor various beam parameters in a particle accelerator. We introduce a few examples of common instruments for each specific parameter, starting with beam intensity and beam position, followed by transverse distribution and beam emittance. We also present ways to monitor the longitudinal and the energy distribution. The last section describe how we can determine the amount of particles that the beam loose as it travels through the accelerator.

...
19 vidéos (Total 45 min), 3 lectures, 20 quiz
19 vidéos
Important concepts in beam diagnostics3 min
Describing the beam2 min
Faraday cup2 min
Wall current monitor2 min
Beam Current Transformer1 min
Button pick-up1 min
Cavity BPM1 min
OTR and Scintillating screens5 min
Wire scanner and SEM grid3 min
Synchrotron radiation monitor1 min
An introduction to longitudinal profile50s
Transversely deflecting cavity2 min
Streak camera2 min
Energy (profile) monitoring: Spectrometer and ToF2 min
Energy along a single bunch1 min
Introduction to beam loss and machine protection.3 min
Ionization chamber2 min
Scintillation counter1 min
3 lectures
Introduction to lecture on current and position measurements10 min
Introduction to lecture on transverse beam profile measurements10 min
To measure the beam emittance and the Twiss parameters:30 min
20 exercices pour s'entraîner
Motivation to beam diagnostics2 min
Important concepts in beam diagnostics12 min
Describing the beam6 min
Faraday cup6 min
Wall current monitor4 min
Beam current transformer4 min
Button pick up6 min
Cavity BPM4 min
OTR and scintillation screens4 min
Wire scanner and SEM grid6 min
Synchrotron radiation measurement4 min
Emittance measurements
Transversely deflecting cavity2 min
Streak camera2 min
Energy monitoring: Spectrometer and ToF4 min
Energy along a single bunch2 min
Introduction to beam loss and machine protection2 min
Ionization chamber2 min
Scintillation counter2 min
Beam diagnostics: Graded test
Semaine
4
1 heure pour terminer

Basics of Vacuum techniques

This module gives an introduction to basic concepts of vacuum physics and techniques in accelerators. Vacuum regions and the behavior of residual gas in these regions are described. Important phenomena, such as velocity distribution, average collision distance and molecular formation are explained by Maxwell-Boltzmann theory. These phenomena are used to determine vacuum criteria for accelerator systems. Basic concepts of vacuum pumps will be described, and different types of vacuum equipment will be presented. The objective is that the students would understand the behavior of residual gas in Vacuum systems. They should be able to determine Vacuum criteria for a given system. They should also be able to choose proper equipment for Vacuum generation and measurement.

...
11 vidéos (Total 26 min), 1 lecture, 11 quiz
11 vidéos
Introduction to pressure/vacuum2 min
Three states of residual gas58s
Definition of vacuum regions1 min
Composition of residual gas1 min
Introduction to pumps59s
Gas-Displacement Pumps2 min
Kinetic Vacuum Pumps2 min
Gas-Binding Pumps4 min
Vacuum Gauges3 min
Vacuum components3 min
1 lecture
Brief introduction to Maxwell-Boltzmann theory for ideal gas10 min
11 exercices pour s'entraîner
Motivation4 min
Introduction to pressure/vacuum2 min
Three states of residual gases8 min
Definition of vacuum regions2 min
Composition of residual gases
Gas displacement pumps
Kinetic vacuum pumps
Gas binding pump
Vacuum Gauges
Vacuum components
Vacuum technology: Graded test

Enseignants

Avatar

Anders Karlsson

Professor Electromagnetic Theory
Department of Electrical and Information Technology
Avatar

Pauli Heikkinen

PhD, Chief engineer for the Accelerator Laboratory at the University of Jyväskylää in Finland
Avatar

Franz Bødker

R&D Engineer, Ph.D.
Technical University of Denmark
Avatar

Maja Olvegård

Post Doc in Beam Diagnostics
Department of Physics and Astronomy, FREIA, Uppsala University

À propos de Université de Lund

Lund University was founded in 1666 and has for a number of years been ranked among the world’s top 100 universities. The University has 47 700 students and 7 500 staff based in Lund, Sweden. Lund University unites tradition with a modern, dynamic, and highly international profile. With eight different faculties and numerous research centres and specialized institutes, Lund is the strongest research university in Sweden and one of Scandinavia's largest institutions for education and research. The university annually attracts a large number of international students and offers a wide range of courses and programmes taught in English. In addition, International Institute for Industrial Environmental Economics (IIIEE) is part of the university and works to advance strategies for sustainable solutions through cutting edge interdisciplinary research, high-quality innovative education, and effective communication and strong partnerships. ...

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous achetez un Certificat, vous bénéficiez d'un accès à tout le contenu du cours, y compris les devoirs notés. Lorsque vous avez terminé et réussi le cours, votre Certificat électronique est ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.