Chevron Left
Retour à Fundamentals of Reinforcement Learning

Avis et commentaires pour d'étudiants pour Fundamentals of Reinforcement Learning par Université de l'Alberta

4.8
étoiles
2,501 évaluations

À propos du cours

Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make decisions is of vital importance today, with more and more companies interested in interactive agents and intelligent decision-making. This course introduces you to the fundamentals of Reinforcement Learning. When you finish this course, you will: - Formalize problems as Markov Decision Processes - Understand basic exploration methods and the exploration/exploitation tradeoff - Understand value functions, as a general-purpose tool for optimal decision-making - Know how to implement dynamic programming as an efficient solution approach to an industrial control problem This course teaches you the key concepts of Reinforcement Learning, underlying classic and modern algorithms in RL. After completing this course, you will be able to start using RL for real problems, where you have or can specify the MDP. This is the first course of the Reinforcement Learning Specialization....

Meilleurs avis

AT

6 juil. 2020

An excellent introduction to Reinforcement Learning, accompanied by a well-organized & informative handbook. I definitely recommend this course to have a strong foundation in Reinforcement Learning.

HT

7 avr. 2020

This course is one of the best I've learned so far in coursera. The explanations are clear and concise enough. It took a while for me to understand Bellman equation but when I did, it felt amazing!

Filtrer par :

351 - 375 sur 600 Avis pour Fundamentals of Reinforcement Learning

par Chang, W C

24 oct. 2019

I like the concept are represented in visualization way.

par Dindar Ö

14 mars 2022

Very easy to follow and well organized course material.

par Mark H

6 févr. 2022

The best place to learn reinforcement learning online!

par Marcelo G P d L

25 juin 2021

This is a great introduction to Reinforcement Learning!

par Ignacio O

22 août 2019

Excellent beginners course of a very interesting topic!

par Trevor M

28 août 2019

Excellent material paired with excellent instruction.

par Ricardo P

13 sept. 2021

Excellent introductory material. Very well explained.

par Salomon T

12 juil. 2020

Great course, that gives a thorough foundation on RL!

par Antonio P

11 nov. 2019

Great introductional course on Reinforcement Learning

par Gyanendra D

11 déc. 2020

Very good course if you follow along with the book.

par Chirag M

5 nov. 2020

Great course! A lot of good material and insights!

par Jingxin X

17 mai 2020

Very helpful hands-on experience with the notebooks

par Yue Z

9 févr. 2020

Everything is good except the peer review question.

par Tobias K

24 sept. 2021

Great mixture of theory and the intuition behind!

par Jaime C

27 mars 2021

Excellent, good combination of theory and practice

par Mario A C S

16 oct. 2020

Excellent course, great materials and explanations

par Mark P

19 mai 2020

Excellent intro. Well paced, clear videos. Thanks!

par Arman K

31 déc. 2021

This course was so helpful to me. Thank you all.

par Pratyush M

15 juin 2020

some more practical implementation can be better.

par Maria D

23 mai 2020

Challenging but helpful, awesome practical tasks!

par Deleted A

6 sept. 2019

Builds a good foundation of basic concepts of RL.

par Marco G

7 janv. 2021

clearly explained, nice textbook, good exercises

par Sriram R

24 août 2019

Well organized course. Good pedagogy. Well done!

par Iman R

26 août 2022

The best training course to get started with RL

par Dongyu L

20 mai 2021

Very good and clear introduction of the course.