Chevron Left
Retour à Dynamic Programming, Greedy Algorithms

Avis et commentaires pour d'étudiants pour Dynamic Programming, Greedy Algorithms par Université du Colorado à Boulder

43 évaluations

À propos du cours

This course covers basic algorithm design techniques such as divide and conquer, dynamic programming, and greedy algorithms. It concludes with a brief introduction to intractability (NP-completeness) and using linear/integer programming solvers for solving optimization problems. We will also cover some advanced topics in data structures. Dynamic Programming, Greedy Algorithms can be taken for academic credit as part of CU Boulder’s Master of Science in Data Science (MS-DS) degree offered on the Coursera platform. The MS-DS is an interdisciplinary degree that brings together faculty from CU Boulder’s departments of Applied Mathematics, Computer Science, Information Science, and others. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics, and statistics. Learn more about the MS-DS program at

Meilleurs avis


18 sept. 2022

Great work from professor Sriram Sankaranarayanan explaining such complex material. I wish we could review more examples during the class (specially Dynamic Programming ones).


20 sept. 2021

Excellent. This course covers some difficult topics, but the lectures and homework assignments were superb and made them quite approachable.

Filtrer par :

1 - 13 sur 13 Avis pour Dynamic Programming, Greedy Algorithms

par Spyros T

26 oct. 2021

par Dave M

21 sept. 2021

par Bijan S

14 déc. 2021

par Rishabh S

5 août 2021

par Yu S

23 juil. 2022

par Abdikhalyk T

1 déc. 2021

par Peter D

3 avr. 2022

par Jeffrey C

15 mai 2022

par Rafael C

5 juil. 2022

par Billy C

6 déc. 2022

par Alejandro M

19 sept. 2022

par Vanshaj A

19 nov. 2022

par Sandipan D

27 nov. 2022