Chevron Left
Retour à Data Science Methodology

Avis et commentaires pour d'étudiants pour Data Science Methodology par IBM

4.6
étoiles
16,942 évaluations
2,066 avis

À propos du cours

Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand. This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand. Accordingly, in this course, you will learn: - The major steps involved in tackling a data science problem. - The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. - How data scientists think!...

Meilleurs avis

AG
13 mai 2019

This is a proper course which will make you to understand each and every stage of Data science methodology. Lectures are well enough to make you think as a data scientist. Thank you fr this course :)

JM
26 févr. 2020

Very informative step-by-step guide of how to create a data science project. Course presents concepts in an engaging way and the quizzes and assignments helped in understanding the overall material.

Filtrer par :

1776 - 1800 sur 2,065 Avis pour Data Science Methodology

par Nathan E

6 févr. 2020

I think the content presented was okay, and was generally presented quite clearly. The labs were well structured and easy to follow, but I didn't feel that I was learning skills to understand when to use different methodologies, or what kinds of challenges I might face along the way. The example given was clear and easy to follow, but I don't feel that I learned a lot that prepared me to analyze other data science questions.

par Vincent Z

13 janv. 2019

Very general and abstract presentation of what the Data Science recipe is. Still nothing practical three courses into the data science specialization... Had I followed the schedule, I would be 9 weeks in with nothing to show off. At least, this course gives a nice overview of what a data scientist will be doing, but I think this should have been presented in the first week of the first course, without necessarily testing it.

par Karel H

24 mars 2019

The exam for week 2 was terrible. The questions were way too tricky it was not necessary. Also I only was reviewed by one peer for my final assessment. This was bad because I deserved 100% and they gave me a only "Good" mark on one section probably because they figured out I gave them a "Good" mark on a section which they only did good on. More peer reviews should have been done than just one. I deserved a higher grade.

par Josephine C

14 avr. 2020

An informative introduction to data science methodology, but the presentation of the material could use more work. The videos could use better production values, with perhaps a bit of music and more visual aides. There is also an annoying six seconds of silence at the beginning of each video which made me think there was something wrong with my audio. It would also be nice if some of the labs were a bit more interactive.

par Vimal O P

9 nov. 2021

On overall IBM data science professional certificate track: P​ros: Content is just good enough, instructors are good. Cons: IBM watson and the platform given to practise on is awful and has terrible performance and reliability issues, most often doesnt work and had an impact on my test deliverables. I personally overcame those issues to some extent with kaggle's and google colab jupyter notebook environments.

par Jennifer B

31 déc. 2019

While it is important to demonstrate that there is more to data science than simply applying a tool, this course did little more than name some steps in the methodological process and give a one or two sentence description. The main case study was fine for me as I have a health background, but were full of undefined clinical terminology. The description of what belonged in each step is somewhat inconsistent.

par Saman R

22 juil. 2019

The lecture videos are extremely verbose and monotonic. The features on the lecture slides have low resolution, and consequently, it's hard-to-impossible to read some of the contents on the charts and graphics. The lecturer talks non-stop without properly distinguishing between the steps. Lastly, the lecture slides are often redundant and have contents that don't really represent the step being lectured.

par Christian H

12 janv. 2020

the course videos are sometimes not exactly to the point when describing what has to happen in the different stages of the provided methodology.

this makes doing the final peer-graded review somewhat difficult.

also the description of the final assessments objectives is super vague (especially compared to the very good descriptions of the final deliverables and assessments in the other courses!)

par Avinash B

18 nov. 2019

Videos are at a high pace and the hospital use case introduces lots of information without proper slides,

when there is different text or points in the slides compared to the audio, it is hard to focus.

My sincere recommendation is to first talk the point in the slides, then explain the details. Also animations can be used to hide content and keep the focus on one item at a time.

par Reid N

12 mai 2019

A fairly odd way to teach the process of data science. I think this should be combined with the introduction to data science course and perhaps simplified/clarified. The amount of jargon between this course and the other courses is significantly greater, and while the course did a decent job, I still leave the course thinking, "hmm, what *exactly* did I learn from that class?"

par Morgane B

23 août 2020

Ce cours présente quelques méthodes d'analyse, mais elles ne sont pas assez structurées. Une présentation plus exhaustive des méthodes avec des exemples, voire une nomenclature pourraient être plus utiles. Le cours gagnerait en qualité s'il donnait un schéma par type de données et méthodologie de traitement conseillée avec ensuite les outils techniques recommandés.

par Hadi A

26 juin 2019

Its an amazing course to give you an introduction to Data Science Methodology. But the case chosen was a hard case to understand specially if someone is a beginner in statistics and not into the medical field. I wasn't the only one who got confused while using the methodology on the case shown. Hopefully, a simpler case gets introduced in future.

par Dita A

4 mars 2019

The course is good but the way the example is explained is a bit confusing, especially the when jumping from study content/material to the example.

The peer to peer review for the final assignment is veeeerrryyy subjective. I had to submit 3 times (with little to no change on my answer) in order to pass. Good luck on getting a nice reviewer! :)

par Brandon B

29 avr. 2020

CONS: I would really prefer more interactive lectures. The lectures tended to be boring and monotone. Also the case study content many times was difficult to grasp because it is very specific to hospital field.

PROS: The material covered is quite beneficial in understanding the overall data science process. It is a nice summary.

par Tim P

23 avr. 2020

I thought the course was pretty thorough. Differences between AI automation and data science problem solving is not really explored. Also the main case study was a little out of date and not very well explained. I thought it was a course worth taking as the material around the earlier parts of the methodology were really good.

par Abraham Z

3 janv. 2020

IBM Developer Skills Network was have connection issues during the lessons. I worked on this course at several different locations on two different PC environments. One PC was a corporate controlled windows system, and the other was personal windows system. These connection issues distracted from the course content.

par Rakshit K

10 sept. 2018

If you could have explained the terms related to machine learning more and if you could have spend more time on understanding the Actual problem of the case study and then slowly built up the solution it would have been great course. I loved the organization of course but not the flow of the course. Thank You.

par Muhammad U T

30 mai 2019

It provides a satisfactory overview of the data Science methodology, but the slides and the videos does not suffice the needs to fully understand the concepts and the Labs. Supplementary readings for this course are MANDATORY to understand and fill the knowledge gaps for several topics named in the videos.

par Tom H A L

30 janv. 2020

This course would benefit from more real life examples, and more time spent on an overview of the methodology prior to looking in depth. How the stages would be applied is not explained very clearly. Having completed this course, I am not completely confident in my knowledge of the contents.

par Marcio A

29 sept. 2020

The course is very good. Using a 'case' is helpful to the process. The material presented is also very good, however, would be goog if it was avaliable for the students, even in PDF format. The transcriptions itself are not enough and I was expecting more from Coursera and IBM .

par Rasul B

4 janv. 2021

The material is quite interesting and assignment was challenging too. However, I think that this course would be more effective after we learn some python, sql and AI courses. After that it will be more helpfull to implement theories of methodology, described in this course.

par Esteban P

19 juil. 2019

I think that they should define more the specific concepts of all the states of the methodology, and then make references to "hypothetical" cases. Personally, I lost more trying to understand the examples and I had to go to find more specific information in other sources.

par Nigel D

26 janv. 2020

I really enjoyed the information in the course. Despite having all the information necessary to pass, I do not feel like the course went into enough detail on some of the topics in order to make them understandable. I think this course should be more in-depth than it is.

par Nick L

9 sept. 2020

Although the course does provide a high-level overview of the IBM Data Science Methodology, I would say it does so at a very basic level that does not really help you prepare for any real-world on-the-job application. I can only hope the coming modules go in more depth.

par Ogbons O

17 mai 2020

The course was good but I feel the materials need to be updated. I do not think the videos get down to the nitty-gritty of the concepts. To complete this course, I still had to use external content a lot more than I did in previous courses to get proper understanding.