Chevron Left
Retour à Прикладные задачи анализа данных

Прикладные задачи анализа данных, Institut de physique et de technologie de Moscou

4.4
480 notes
78 avis

À propos de ce cours

Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д. В этом курсе мы разберем прикладные задачи из различных областей анализа данных: анализ текста и информационный поиск, коллаборативная фильтрация и рекомендательные системы, бизнес-аналитика, прогнозирование временных рядов. На их примере вы узнаете, как извлекать признаки из разнородных данных, какие при этом возникают проблемы и как их решать. Вы научитесь сводить задачу заказчика к формальной постановке задачи машинного обучения и поймёте, как проверять качество построенной модели на исторических данных и в онлайн-эксперименте. На каждой задаче мы изучим плюсы и минусы пройденных алгоритмов машинного обучения. Прослушав этот курс, вы познакомитесь с распространенными типами прикладных задач и будете понимать схемы их решения....

Meilleurs avis

par PK

May 24, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

par IS

Jan 21, 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

Filtrer par :

76 avis

par Гридасов Илья Игоревич

Feb 05, 2019

Курс даёт широкий взгляд на то, какие бывают задачи в анализе данных, с подробными pipelin-ами решений. В целом курс не сложный, но крайне полезный.

par Artem Drofa

Jan 21, 2019

Финальный проект очень понравился (делал "Идентификация интернет-пользователей")! Реальная практика применения моделей, а также сабмишна на Каггле.

Если ваши заания длительное время не проверяют, не переживайте, к концу сессии народ точно появится.

Еще раз: проект очень классный и инересный! Не без шероховатостей, но все решаемо, в т.ч. с помощью форума.

par Ivan Smirnov

Jan 21, 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

par Alexander Prokofyev

Jan 20, 2019

It would be nice to have more practice with neuronets. Anyway it's very interesting course. Thanks!

par YaMolekula

Jan 08, 2019

Совет по курсу: слушать со скоростью 2х

Мое мнение по курсу:

1) Первая неделя интересная, про временные ряды маловато. Хотелось услышать про (G)ARCH и другие методы анализа временных рядо

2) Вторая неделя - мрак, все испортила

par Vadim Kirilchuk

Jan 04, 2019

Один из самых лёгких курсов программы. Понравилась обзорность курса, но вот полезность с точки зрения практики около нулевая. Первая неделя рассказала про прогнозирование временных рядов конкретными моделями, но не рассказано насколько эти модели приближены к реальности, даже с заработной платой оказалось, что прогноз далёк от реальности, не рассказано и про регрессию на основе каких-то базовых показателей типо ВВП, инфляции итд итп. Вторая неделя про компьютерная зрения раскрывает интересную тему, но задания оторваны от лекций, а сами лекции толком ничего не рассказывают, опять таки годится в качестве обзора, но не годится в качестве обучения. Третья неделя выделяется в положительную сторону. Четвертая неделя оставила двоякое впечатление, квиз на 3 задание которого все жалуются, и последнее задание, в котором из-за порядка данных решение не принимается. В последнем задании так же неясна практическая ценность. В общем, хотелось бы, чтобы над этим курсом ещё поработали, он выглядит очень сырым.

par Поздняков Юрий Олегович

Dec 29, 2018

Тесты очень напрягают. Хотелось бы иметь больше примеров задач и разборов решений с цифрами от а до я.

par Рядовиков Антон Васильевич

Nov 09, 2018

побольше бы ссылок на исследования врем рядов (я пока на 1й неделе)

par Любовь Соина

Aug 30, 2018

Очень уж галопом по Европам прошлись по нейросетям - отсюда ценность 2-й недели сомнительна. В остальном - хорошо.

par Somov Oleg

Jul 25, 2018

Самый легкий курс за всю специализацию, самое полезное на мой взгляд - анализ временных рядов