Chevron Left
Retour à Custom Models, Layers, and Loss Functions with TensorFlow

Avis et commentaires pour d'étudiants pour Custom Models, Layers, and Loss Functions with TensorFlow par deeplearning.ai

4.9
étoiles
807 évaluations

À propos du cours

In this course, you will: • Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network. • Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data. • Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions. • Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....

Meilleurs avis

PK

3 févr. 2021

It is advanced TF specialization and the way contents are presented in the course are very systematically. Definitely recommended for developers already familiar with TF and wanted to explore further.

MS

24 nov. 2020

Really great course, it teaches you all about the TF API and how to customize it for your needs, i thought only pytorch can make that as it's really pythonic, but i am a nieve noob what can i say.

Filtrer par :

151 - 175 sur 175 Avis pour Custom Models, Layers, and Loss Functions with TensorFlow

par kingjs

3 mai 2022

par Javier B

6 juil. 2021

par Bashar A

16 mars 2021

par Ariel H

11 juil. 2021

par Mogilevskii K

22 mai 2021

par omid S

27 mars 2021

par Ariz M

31 juil. 2021

par Lalatendu P

20 mars 2022

par Chamika G

13 août 2021

par Ignacio L

9 avr. 2021

par Alexander O (

13 juin 2021

par Amit H

16 oct. 2022

par mohit d

10 sept. 2021

par Yuqi W

24 avr. 2022

par Thierry K

9 mai 2022

par Nakshatra G

30 mars 2022

par David R

3 mai 2021

par JackT T

17 janv. 2021

par Ian S

11 sept. 2021

par José L

15 avr. 2021

par Artem M

23 juil. 2021

par Federico C

3 nov. 2021

par Грачев Д И

11 févr. 2022

par Ann A

5 janv. 2021

par Varun S

30 déc. 2020