Chevron Left
Retour à Custom Models, Layers, and Loss Functions with TensorFlow

Avis et commentaires pour d'étudiants pour Custom Models, Layers, and Loss Functions with TensorFlow par deeplearning.ai

4.9
étoiles
807 évaluations

À propos du cours

In this course, you will: • Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network. • Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data. • Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions. • Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....

Meilleurs avis

PK

3 févr. 2021

It is advanced TF specialization and the way contents are presented in the course are very systematically. Definitely recommended for developers already familiar with TF and wanted to explore further.

MS

24 nov. 2020

Really great course, it teaches you all about the TF API and how to customize it for your needs, i thought only pytorch can make that as it's really pythonic, but i am a nieve noob what can i say.

Filtrer par :

76 - 100 sur 175 Avis pour Custom Models, Layers, and Loss Functions with TensorFlow

par Yaroslav K

25 janv. 2021

par Tamim A

9 juin 2022

par Abhinav S

16 oct. 2022

par Fahmi J

2 févr. 2021

par Himasha J

13 oct. 2021

par Alysson M D O B

2 juil. 2021

par Manjunath S

21 mai 2021

par Nikolay S

28 févr. 2021

par Akshay K

28 déc. 2021

par Shiva S B

29 juin 2021

par Gonzalo G N

19 févr. 2021

par Abdelrhman y a m

9 oct. 2021

par Nancy S

31 déc. 2021

par Rajendra A

14 juil. 2021

par Yongji W

18 janv. 2022

par sina c

7 déc. 2021

par Vaibhav B

5 juin 2021

par Lois A L

12 févr. 2021

par Liu Y

17 févr. 2021

par Yagna G

7 avr. 2022

par Anselmo M O

15 août 2021

par Oliver G

20 oct. 2022

par Mojtaba A

14 août 2022

par Jacek B

4 mai 2022

par Rajul A

1 juin 2021