Chevron Left
Retour à A Crash Course in Causality: Inferring Causal Effects from Observational Data

Avis et commentaires pour d'étudiants pour A Crash Course in Causality: Inferring Causal Effects from Observational Data par Université de Pennsylvanie

4.7
étoiles
479 évaluations

À propos du cours

We have all heard the phrase “correlation does not equal causation.” What, then, does equal causation? This course aims to answer that question and more! Over a period of 5 weeks, you will learn how causal effects are defined, what assumptions about your data and models are necessary, and how to implement and interpret some popular statistical methods. Learners will have the opportunity to apply these methods to example data in R (free statistical software environment). At the end of the course, learners should be able to: 1. Define causal effects using potential outcomes 2. Describe the difference between association and causation 3. Express assumptions with causal graphs 4. Implement several types of causal inference methods (e.g. matching, instrumental variables, inverse probability of treatment weighting) 5. Identify which causal assumptions are necessary for each type of statistical method So join us.... and discover for yourself why modern statistical methods for estimating causal effects are indispensable in so many fields of study!...

Meilleurs avis

WJ

11 sept. 2021

Great introduction on the causal analysis.The instructor did a great job on explaining the topic in a logical and rigorous way. R codes are very relevant and helpful to digest the material as well.

MF

27 déc. 2017

I really enjoyed this course, the pace could be more even in parts. Sometimes the pace could be more even and some more books/reference material for further study would be nice.

Filtrer par :

1 - 25 sur 154 Avis pour A Crash Course in Causality: Inferring Causal Effects from Observational Data

par Pak S H

7 sept. 2020

par Fred

30 nov. 2017

par Kilder U

7 nov. 2020

par Miguel B

17 avr. 2018

par Dr. C C

20 mars 2021

par Oliver D

30 juil. 2020

par charlene e

16 juil. 2017

par Wei F

25 nov. 2018

par Anna B

17 mars 2020

par Jiacong L

27 nov. 2019

par Theo B

2 juil. 2017

par Mateusz K

7 déc. 2018

par Sam P

4 oct. 2020

par Odinn W

29 mars 2020

par Herman S

2 oct. 2017

par Nóra P K

1 déc. 2019

par Leihua Y

12 mai 2019

par Stephen M D

4 sept. 2019

par Benjamin R

1 sept. 2019

par Seana G

4 mai 2020

par Ayush T

17 janv. 2020

par Ali A A M

15 févr. 2021

par HEF

18 févr. 2019

par Srinidhi M

26 avr. 2020

par Morbo

28 déc. 2017