Chevron Left
Retour à Convolutional Neural Networks

Avis et commentaires pour d'étudiants pour Convolutional Neural Networks par

37,039 évaluations
4,817 avis

À propos du cours

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization....

Meilleurs avis

12 janv. 2019

Great course for kickoff into the world of CNN's. Gives a nice overview of existing architectures and certain applications of CNN's as well as giving some solid background in how they work internally.

11 déc. 2019

Great Course Overall\n\nOne thing is that some videos are not edited properly so Andrew repeats the same thing, again and again, other than that great and simple explanation of such complicated tasks.

Filtrer par :

51 - 75 sur 4,768 Avis pour Convolutional Neural Networks

par Manhal R

17 juin 2020

Hands on exercises are fill in the blanks type. To actually learn from them I suggest after submitting the assignment and download the notebook. Use to refer while you build everything from scratch yourself.

Content wise its great. Had a hard time understanding Week 3 content, Week 4 is fun as it teaches you face recognition and neural style transfer, both are explained clearly so wont spend much time rewatching the vids.

Week 1 is really very important and very basic. I suggest even after completing the specialization do refer back to these videos so that everything gets installed perfectly in you.

Week 2 is also a bit time taking to learn for newbies as throws plenty complex models on your face, right after getting an intro from Week 1! I suggest reading the research papers. I read my first research paper from here only.

par Bruce M

19 août 2020

Really enjoyed this one on Convolutional Neural Nets. Takes me back to a number of problems I worked on in my days in "image understanding" / computer vision. Really interesting to see how a deep learning approach contrasts with some of the early attempts at explicit image feature extraction and symbolic reasoning that we were doing back then. And yet, many of the same core concepts are woven throughout the deep learning approach -- image convolution, edge detection and segmentation, "area of interest" (AOI) operators multi-resolution feature spaces, ... - all of these are still embedded - now implicitly - in the layers of the networks. And I plan to do a bit more experimentation with "Neural Style Transfer" to satisfy my creative side. THANKS!

par Yix L

15 nov. 2019

This course is great and the assignments are more challenging and helpful than the previous courses in the specialization, and the assignments are practical a lot to the real-world applications. However, while I was doing it, even though it pushes me to think more and spend more time on it, I still have a sense that I don't have a global view for the assignments, in another words, if there is no elaborate written function architecture and pre-filled code, I have few clue on how to start coding an application in the assignment. Overall, professor Andrew's courses are always understandable, I think it is necessary for me to read more papers referenced in the course and assignments and then come back again.

par Gregory S

17 août 2018

The course content is fantastic (YOLO, CNNs, Neural Style Transfer). The lectures are helpful. I would like to see a bit more help using Tensorflow for those of us who are new to it (optional lectures, links, etc).

The only real negative is the flaky behavior of Jupyter notebooks. More than once I have gotten results that turn out to be incorrect, even though my code is correct. The fix is to restart the kernel, sometimes it takes several tries. This is confusing and frustrating. I wasn't a big fan of Jupyter notebooks before this course and its behavior has done little to change my mind. I consider Jupyter notebooks to be separate from the course itself, so I'm still a big fan of the course.

par Ricardo S

28 janv. 2018

Fantastic course, extremely well taught by Andrew, with targeted assignments, that add to the learning experience by making the theory concrete. I particularly liked the "ongoing investigation" tone of this course, with the abundant references to papers, explanation of the evolution of convolutional networks, and hints at possible improvements. The motivating use cases are also very well thought. I recommend this course for any aspiring data scientist, even if her field is not that of computer vision.

Unlike other courses of the specialisation, this course does not have interviews with "heroes of machine learning", that would have been a nice cherry on the cake.

par Francis S

26 août 2019

Previously, I have taken online classes before in Machine Learning by going the cheap route (Udemy, blogs, youtube) and you get what you pay for. Andrew Ng explains it the most thorough, easiest, and simplest way possible. Presentation material is very understandable. Great class for new machine learning learners. Highly recommend it. The only downside is that the programming exercises are little too easy in my opinion. I feel like the best way to get your hands dirty is to do actual projects (do your own projects). These lectures are good for intuition and background of different types of Neural Network architectures. Other than that, Great material. Thanks Andrew!

par José D

26 oct. 2019

This is course 4 of the Deep Learning Specialization. Things get harder in this stage as we go through Convolutional Neural Networks (CNN), that are more difficult to understand than "simple" neural networks (Course 1 now looks easy to me...). Well-designed programming assignments along with nice course materials. You will understand how work image recognition in general, which is used for many problems like: image classifiers, face verification/recognition, object detection in real-time (YOLO algorithm) and even artistic creation (Neural Type Transfer). An important course that is worth the time and effort. Iv' learned many things.

par Glenn B

31 mai 2018

Great topics and discussion, however the lectures started to gloss over the details of implementation which were left entirely to the exercises.

Use of Tensorflow and Keras required more background to clearly do the exercises than provided in the tutorials or examples.

I get the dynamic aspect of writing the lecture notes in the videos, however the lecture notes should be "cleaned up" in the downloadable files (i.e., typos corrected and typed up). Additionally, the notes written in the video could be written and organized more clearly (e.g., uniform directional flow across the page/screen rather than randomly fit wherever on the page.

par Charles M

19 août 2018

Excellent material taught by the best, Andrew Ng. Very relevant to my interest and career goals. The object detector section was especially helpful for my work at a small startup. The material is top notch and more detailed of what I got during my masters in computer science. The code examples and assignments are very fun and rewarding. There are some slight glitches during saving and submitting assignments, so i always made a backup copy. Other than that, the course was great. I skipped directly to convolutional neural networks since I am already familiar with deep learning. However, i eventually wanted to finish all 4 courses.

par Anna V

30 avr. 2018

Great diving into the cutting edge computer vision algorithms (such as YOLO), the state of the art CNN architectures(ResNet, VGG, Inception Network, Siamese Network), with a variety of applications of this architectures and algorithms, such as self-driving system, neural style transfer generator and face recognition and verification! Very simple and understandable submission of very hard to read and realize machine learning papers, perfect explanationof the cutting edge machine learning algorithms, architectures and approaches used in this field. I'm so pleased with the quality in this course! It helped me VERY MUCH! Thank you

par Artem M

18 mai 2018

This course is not very deep mathematically (which is not very good. Again, additional material on the derivation of gradient descent for filters could be provided) but it is deep learning, so it is expected. On the other hand, the contents are just wonderful. It was my first exposure to computer vision/CNNs, and I can say that the introduction here is absolutely the best. It covers a lot of topics (new and not so new). Finishing this course will make you well aware of how convolutional NNs work and point you towards particular areas depending on your interests. By far the best introductory course in this specialisation.

par Noor A

28 mars 2020

Great introduction to the topic. For people who would like a case study oriented course this is it. The amount of content is also very impressive even if slightly dated. I have spent almost 2 years actively doing research and working with CNN's but the course still had a lot to offer in terms of content. It would've been the perfect starter pack if there was a section on image segmentation. Maybe there could be a complete course on Ng just covering case studies and research papers. Regardless attending this course is a must. The assignments are well curated and I can image will be extremely forgiving towards beginners.

par Guy M

5 sept. 2018

This is a great introduction to what CNNs are and how to implement them in a framework. My one almost-gripe is that when it comes to the assignment it can leave you floundering because there is minimal coverage of some of the requisite knowledge of running a NN using the framework. I'm all for making students work things out, but in one or two ways it was just a bit too high of a step to expect a student to climb. I'm talking here about the steps required to actually run a NN and then make a prediction. By contrast, several of the much easier steps might have a hint such as "You might find the ... function useful".

par Zhiming C

29 mai 2020

This is a very good course. It contains quite a lot important CNN topics and models, which are state of art and very popular nowadays in industry. Although the contents are only aiming at some introductions of these topics, we can still get a very good impression of what it is and how it works. The exercises are relative simple, because to implement a real network and to train it will take quite a lot time. I think if there would be a implementation of e.g. model in detail, we can be more familiar with the contents. All in one, it is a very good course and covers a lot of useful models and information!

par David R R

28 nov. 2017

This is a very interesting and functional course. Week 1 gives you the basic ideas behind CNN and it is very easy to follow the videos. The next weeks gives you what are under the hood in object detection systems, other CNN architectures, style use... I recommend this course

Este es un curso interesante y sobre todo funcional. La primera semana te enseña las ideas básicas detras de un CNN ademas de que son lecturas faciles de seguir. Las siguientes semanas te enseñan los "secretos" de los sitemas de detección de objetos, otras arquitecturas de CNN, uso artistico de las mismas... Recomiendo el curso

par Sourab M

3 déc. 2018

One of the best courses for learning deep learning concepts for computer vision. It provides a deep understanding of convolutional neural networks and the various architectures used by state-of-the-art models. We get to learn various concepts of computer vision - image classification, localization, image detection, face verification, face recognition and neural style transfer. Ii would have been better if course also covered image segmentation. We get much needed hands-on through interesting assignments and along the way we get to learn Tensorflow and Keras. Thank you for this great course :)

par Akash M

10 août 2020

When i started out with deep learning, i found Course 4 to be the most intriguing part of this specialization. And i was not disappointed. I already knew the scope of CNNs, but to see them in work from up close was a treat. This course teaches you the fine intricacies of Convolutional Neural Network. It also showcases the working of some really famous models that were built in the last few years. I hope this course can be extended to include the applications of CNN in NLP as well. This course is a must for budding Deep Learning Researchers. I cannot wait to apply the learnings in real life.

par Ayush T

1 mars 2018

Like the other courses of this series, this course is really good. In this tutorial I have not only understood how to implement things but I have also learnt what's the math behind those things. It is important at-least for me because it allows me to do more experiments with CNN's or in general Neural Networks. The thing which I like most about this course is its programming exercises.

I recommend this whole series to those people who want to learn some advance machine learning stuff like GAN, variational autoencoders and Reinforcement learning. This series will help as a strong foundation.

par Yilun Y

5 avr. 2019

Overall an awesome course, however, it somewhat lacks some important topics and models such as SSD, Faster RCNN, mask RCNN, etc which are even more frequently mentioned in literature and applied in real world projects. This course really sparked my curiosity and passion in deep learning, I actually learned the models mentioned before by reading the original paper and many useful blogs. This is a long but rewarding journey, I would also like to see more topics be covered in this course and let more people know how these state-of-art models work and how they really change the world.

par Xiang J

3 nov. 2019

I really like this course, because it not only taught me the exciting new topics that I always want to learn, such as object detection algorithm and neural style transfer, but also it gave a solid introduction to the concepts of convolution. The assignments are great, it is fun to do and it also helped me more concretely understand the materials of main course. As to further improve the course, may be it would be nice to build a whole end-to-end pipeline including training the main convolution model in car detection as I know in Google colab even public users have access to GPUs.

par Mukund C

14 oct. 2019

Loved it!! Loved it!! Loved it!! I wish there was a little bit more engagement from mentor side as well as updates on the coursework with the latest developments in the object detection field. I also wish that there were a little bit more involved programming exercises, maybe one in "training" where one has to label objects and "train" a neural net. One of the things that I missed in the course is an explanation of the Neural Network architectures and why they work - e.g. the VCCG-16 or Inception Network - for example. Maybe one has to read the papers to understand them?

par Shankar G

8 juil. 2018

This part of the CNNs course in DL was awesome and long enough. It started with foundations of CNNs, where the concepts of CNNs layers was made very clear. Programming assignments helped understanding the layering activation properly. The good part was DeepCNNs case studies explanation with its pros and cons, plus the practical advice for using ConvNets. Also this course provided few papers applications like object detection, face recognition and neural style transfer which was amazing. All the quizzes and programming assignments refreshed the concepts in a good manner.

par Mahmoud s m

23 mai 2020

i hope we could implement every code from scratch , i mean that you don't do the heavy lifting for us and we start the code from the zero point no matter how much time or effort it would take us , implementing codes in the existing manner is great , but creating it and passing through all phases of the code like arranging the code , efficiency in programming , the steps of writing a certain function also the arrangement of all functions like(which before which) .All of this will help us gain better hands on programming ourselves . thx for the great course :D :D

par Abhilash V

19 avr. 2018

This course covers the basics of convolutional neural networks , resnets, inception nets, yolo, style transfer, face recognition.The programming assignments mostly for yolo and face recognition is done with transfer learning , i think its only fair as they are computationally expensive to train.I am confident about all the materials covered in this course Andrew Ng as always breaks down the problem to the basics so you can understand them.Its a great course if you want to know and implement the well known computer vision problems with the well known algorithms.

par Alouini M Y

26 déc. 2017

This course helped me consolidate my computer vision knowledge. In fact, I had some prior experience but felt left behind given the current rapid advancements in the field of computer vision (thanks to deep learning mostly). The material is up-to-date and the assignments (especially the notebooks) are very pleasant. I have learned a lot of modern CV techniques: YOLO for image detection and localisation, style transfer, face verificiation with DeepFace, and many more. I recommend to anyone that is serious (or at least curious) about modern CV techniques.