Chevron Left
Retour à A Complete Reinforcement Learning System (Capstone)

Avis et commentaires pour d'étudiants pour A Complete Reinforcement Learning System (Capstone) par Université de l'Alberta

566 évaluations

À propos du cours

In this final course, you will put together your knowledge from Courses 1, 2 and 3 to implement a complete RL solution to a problem. This capstone will let you see how each component---problem formulation, algorithm selection, parameter selection and representation design---fits together into a complete solution, and how to make appropriate choices when deploying RL in the real world. This project will require you to implement both the environment to stimulate your problem, and a control agent with Neural Network function approximation. In addition, you will conduct a scientific study of your learning system to develop your ability to assess the robustness of RL agents. To use RL in the real world, it is critical to (a) appropriately formalize the problem as an MDP, (b) select appropriate algorithms, (c ) identify what choices in your implementation will have large impacts on performance and (d) validate the expected behaviour of your algorithms. This capstone is valuable for anyone who is planning on using RL to solve real problems. To be successful in this course, you will need to have completed Courses 1, 2, and 3 of this Specialization or the equivalent. By the end of this course, you will be able to: Complete an RL solution to a problem, starting from problem formulation, appropriate algorithm selection and implementation and empirical study into the effectiveness of the solution....

Meilleurs avis


27 avr. 2020

This is the final chapter. It is one of the easiest and it was fun doing that lunar landing project. This specialisation is the best for a person taking baby steps in the reinforcement learning.


26 févr. 2020

Great course for learning the fundamentals. I liked that it tied into function approximation for deep reinforcement learning. The text book made the fundamental concepts more clear.

Filtrer par :

1 - 25 sur 123 Avis pour A Complete Reinforcement Learning System (Capstone)

par Daniel M

7 nov. 2019

par Justin S

6 déc. 2019

par Kayla S

13 janv. 2020

par Alberto H

4 janv. 2020

par D. R

2 janv. 2020

par Ivan S F

14 déc. 2019

par David C

13 nov. 2019

par אלון ה

29 déc. 2019

par Maxim V

25 janv. 2020

par Neil H

10 nov. 2021

par Alireza M

10 déc. 2021

par Stewart A

9 nov. 2019

par Qiuping X

24 déc. 2019

par Connor W

1 avr. 2021

par Maximiliano B

26 avr. 2020

par Mohammed A N

29 sept. 2020

par Niraj S

23 mai 2020

par Jesse W

29 juil. 2020

par Mukund C

2 avr. 2020

par César S

28 sept. 2021

par Akash B

8 déc. 2019

par Walter O A

18 janv. 2020

par Varun B

20 sept. 2020

par Pavel I

27 juil. 2021

par Dale G

2 août 2021