Retour à Statistiques bayésiennes

étoiles

767 évaluations

•

248 avis

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction.
We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."...

RR

20 sept. 2017

Great course. Difficult to apprehend sometimes as the Frequentist paradigm is learned first but once you get it, it is really amazing to see the believe update in action with data.

GH

9 avr. 2018

I like this course a lot. Explanations are clear and much of the (unnecessarily heavyweight) maths is glossed over. I particularly liked the sections on Bayesian model selection.

Filtrer par :

par Matti H

•15 janv. 2017

Good introduction to Bayesian concepts, but the course would benefit of some rethought of design of exercises.

par Wei C C

•6 déc. 2018

The materials and response from the organization are unavailable for a while and never get an answer

par Jinru

•3 déc. 2017

good stuff but extremely hard to follow, not engaging at all. lecturer reads off the slides.

par Sandhya R

•28 sept. 2017

A bit complicated compared to the other courses as part of the specialization

par CHIDI O

•4 août 2019

Poor lectures. Please look at the feedbacks on this given in the forums

par WONG, K C J

•3 déc. 2016

Too Fast. Video is too short and spend a lot of time in the summary.

par Juhong P

•3 oct. 2019

Too difficult to catch up each week.

par George L

•23 nov. 2016

Very theoretical and unstructured

par Markus S

•7 sept. 2016

About two years ago I completed Dr. Mine's course "Data Analysis and Statistical Inference" and was quite impressed by it. I always hoped that there'd be a follow up on bayesian statistics, so I was really excited when I heard that a course on this topic had finally been created. However while attending the course I became more and more disappointed. Dr. Mine does a nice job explaining things, other teachers in this course aren't as talented. Most slides / videos are quite useless for teaching because they skip over important steps without giving appropriate explanations. Also I was quite disappointed that this course pretty much only focuses on conjugate priors. MCMC is only skimmed over and the introduction to MCMC is more than questionable - instead of showing a simple example, MCMC is squeezed into the topic of bayesian model selection. Another point is R - this course doesn't really teach bayesian stats with R. It teaches how to call one-liners like bayes_inference (from package statsr) or bas.lm (from package BAS) instead of lm. This is totally disappointing. I wish this course would skim over conjugate prior methods and then focus on MCMC sampling methods by teaching how to build interesting and practically useful models using JAGS/STAN/PyMC/whatever. For anyone interested in bayesian stats I'd recommend reading "Doing Bayesian Data Analysis - Using R, JAGS, and STAN" and "Probabilistic Programming and Bayesian Methods for Hackers". These books are actually cheaper than this course.

par Donald A C

•8 avr. 2017

The first three courses in this Duke series were superbly well done. I have taken numerous courses from Harvard and Johns Hopkins, and none of them compare in quality of execution of the first three Duke courses in this series.

And then there was Bayesian Statistics: much of the "instruction" in this course was truly awful. The quality of the slides and video and so on was still excellent, but the "teaching" was horrible. Vast amounts of totally unexplained jargon and very extensive equations were thrown at the students with the apparent assumption that the course was a review for postdoctoral statistics students. When material is beyond the scope of what perspective students can reasonably be expected to understand, faculty members should be honest enough to just say so rather than pretending to teach the subject matter.

I appreciate very much what the Duke faculty achieved in the first three courses, but the treatment of Bayesian statistics that I have just suffered through was shameful.

par Lee E

•19 nov. 2016

The first three classes in this certification were excellent; this course was anything but that. There seems to be a significant disconnect between the first three courses (probability, inference, linear regression) and the fourth course (bayesian). I do not have a strong statistics background but I felt the first three classes in the certification challenged me, while providing an adequate level of support and thorough / articulate examples; the pace was perfect. Yet, with the fourth course I believe that either: 1) there needs to be a bridge course that prepares you for the bayesian course, or 2) the material needs to be taught at a slower pace with more specific and well presented examples / frameworks to work from. Although I was able to complete the course, I will now have to find an alternative source to learn from in order to really understand bayesian stats.

par Aydar A

•20 déc. 2017

The worst course in the series.

It progresses at a hurricane speed, thus as usefull as the Maria. I have barely made and it was not a pleasant experience. In fact I drowned at the week 4. The only reason I did not drop the course is because I've already paid for the previous courses of the specialization and I need to complete specialization for the certificate.

I think only people who had bayesian stats before and take this course as a refresher might find it pleasant. Or people with very good knowledge of probability theory. For others it is just a waste of time, because you will not learn to sail during a hurricane.

I have checked the syllabus of the other course on Bayesian Stats offered on coursera and it covers the same material in 8 weeks(2 courses), so that course would probably be a better choice if you are considering taking this course individually.

par Jaroslav H

•24 sept. 2021

very poorly organized. Lectures were not really taught: since you cannot call a lecture if a prof is just reading from the prompter a book content with a monotonous voice. The logistics of the projects is note explained at all. No instruction on how to generate the .html file, no instruction how to submit a project: the GUI is very misleading. Takes forever to get project reviewed. It may be reviewed only if you ask on the forum, and then it is not quite clear what link to display: no instruction on that either. If you lucky to get your project reviewed, not clear where to read the feedback because the instructions says " below" and there is no feedback "below" ... The grades are reported differently in different part of the blog. Overall terrible organization and terrible instruction. I will never take anything with this instructors

par Nenad P

•24 oct. 2021

If the previous three courses were slightly thin on actual mathematics, but generally well done, this one just ups the ante in a wrong way, throwing so many things at you in the same timespan that it's simply inscrutable. The course on linear regression would've been a 15 minute tangent in this one. I say this as someone who is mathematically inclined and already has a degree in engineering, so this is usually easy breezy for me when it's actually presented well. This wasn't the case. I feel like I actually haven't learned anything, since the only way I pulled through was through rote memorization and constantly consulting the literature. The R "lessons" were also shallow, and you will definitely need another course (or several) to learn these things properly. Hard pass.

par John H

•28 janv. 2020

The pace of this specialization increased rapidly with this course. It of course makes sense that as the specialization goes on, the coursework would become more challenging and require more time. However, this was such a leap from previous courses that I feel as if it should be in a different specialization. In every lesson, I felt inundated with complex calculations and formulas that were way above my head. I think that this course spend way too much time on theory (and breezing through it!) and not enough time on R. Why not walk us through multiple Bayesian examples in R? That would actually be helpful. As is, this is a course that I needed to sog through for the specialization. One star.

par Alois H

•21 mai 2017

After a brilliant start of the specialization with courses Introduction, Inference and Regression, the Bayesian course comes as a harsh disappointment.

Weeks 1 and 2 give a useful introduction to Bayes' rule. However, I haven't learnt anything of significance after that. The main instructor's explanations are unclear, and in almost every single video there's a point where there's just too much confusion to get the overall message. This is extremely frustrating and, as mentioned, in sharp contrast to the other courses.

In my opinion this course would urgently need to be re-recorded. Preferably, with a lot more input from Dr Cetinkaya-Rundel, who's an extremely gifted teacher.

par Chengyu H

•21 juil. 2016

I don't understand how come this course can get such high reviews. My experience with this course is horrible. First of all, most quiz are poorly designed, lots of mistakes. For instance, there are 10 Qs in week 1, 3 of them have mistakes. Wasted me tons of times.

Lectures are also difficult to follow. Instructors usually just give formulas without further explanation. I forced myself to go through them until week 4, I finally give it up. I feel like it is a waste of my time. I need to find a better course on this topic.

Most coursera courses are very well designed. This one is the worst I have ever experienced.

par Erik F

•19 juin 2017

Unlike the previous sections in this specialization, this one has no reading material, nor does it have many problem sets to solve. You will definitely need to find external resources in order to complete this section, because numerous concepts are glossed over, explained vaguely, or explained poorly. I recommend Kruschke's "Doing Bayesian Data Analysis" as a very accessible way to learn Bayesian statistics. I'd have no confidence using Bayesian approaches in practice from only the material taught in this section. Frankly, this section seems like it was hastily thrown together, and I was very disappointed.

par Eszter A

•13 sept. 2016

This course needs much more work from instructors before it gets offered to the public. It is poorly assembled, offers hardly comprehensible material with no or very few resources to turn to. Reading material is listed, but they are useful for people already skilled in Bayesian Statistics. Exercises are worded such, that even the questions are a challenge to understand. Quizzes contain material never mentioned during lessons. Discussion forums are left unanswered by the teaching staff - or if they reply, they do it in a very negligent manner. No support on the merits. A major disappointment.

par Graham G

•1 oct. 2019

This course is awful, especially compared with the rest of the courses in the specialization. I had to read an entire Bayesian statistics text book in order to understand this area, and this courses still made little sense. This specialization is supposed to be for beginners and yet this course gets into intense mathematical notation with no preparation or guidance. I have somewhat of a math background, and this course was not only extremely difficult to finish, I don't feel like I really learned much of anything at the end. This course needs to be redesigned from the ground up.

par Paul G

•27 déc. 2020

While I have taught basic statistics courses and have a PhD, I have no prior background in Bayesian Statistics. The coverage of Bayesian concepts lacks sufficient depth for a novice in Bayesian statistics and the materials provided do not provide any further depth. None of the texts I have on hand cover Bayesian statistics at all. The focus of the specialization is supposed to be on learning R as applied to statistics. Between the unfamiliarity of Bayesian statistics and the use of an experimental version of a function in Week 3, I learned essentially nothing about using R.

par Marina C R

•31 juil. 2017

Unlike the first 3 courses of this specialization, which were excellent, this one is not recommendable at all. As many other students have reported, the teaching material is not enough neither to understand the subject nor to do the graded material. I am really disappointed because the problem seems to come at least 4 months ago but the teacher (which by the way is far to be as good as Mine) has not replied. Instead, mentors have suggested to use the forums to make questions but it is neither affordable nor acceptable.

par Renat M

•8 sept. 2017

The course is too sketchy: it does not provide enough materials to grasp the main ideas of Bayesian Statistics nor it gives any details about some formulas and important principles.

This course does not have a book to follow along as the previous courses had (statistics).

I had to spend more than 2 months to be able to understand all the concepts that this course was trying to teach. In this sense watching Youtube videos and reading papers was much more helpful than the entire course itself.

par Cindy C

•5 févr. 2017

This class assumes a lot of statistical knowledge and background that is not covered in the first three classes of the series. So much statistical terminology and jargon was used by the instructor, it felt like taking a class in another language where I had to constantly stop the video and google for the terminology she used. It took a lot of grit to finish the class, which was overall a very demoralizing and negative experience.

- Analyste de données Google
- Gestion de projet Google
- Conception d'expérience utilisateur Google
- Google IT Support
- Science des données IBM
- Analyste de données d'IBM
- Analyse des données IBM avec Excel et R
- Analyste de cybersécurité d'IBM
- Ingénierie des données IBM
- Développeur(euse) Cloud Full Stack IBM
- Marketing appliqué au réseau social Facebook
- Analyse marketing sur Facebook
- Sales Development Representative Salesforce
- Opérations de ventes Salesforce
- Connaître la comptabilité sur le bout des doigts
- Préparation à la certification Google Cloud : architecte de Cloud
- Préparation à la certification Google Cloud : ingénieur(e) en données sur Cloud
- Lancez votre carrière
- Préparez-vous pour obtenir un certificat
- Faire progresser votre carrière

- cours gratuits
- Apprendre une langue
- python
- Java
- conception web
- SQL
- Cursos Gratis
- Microsoft Excel
- Gestion de projet
- Cybersécurité
- Ressources humaines
- Cours gratuits en Science de données
- parler anglais
- Rédaction de contenu
- Développement Web Full Stack
- Intelligence artificielle
- Programmation en C
- Compétences en communication
- Blockchain
- Voir tous les cours

- Compétences pour les équipes en charge de la science de données
- Prise de décisions basées sur les données
- Compétences en génie logiciel
- Compétences personnelles pour les équipes d'ingénieurs
- Compétences en gestion
- Compétences en marketing
- Compétences pour les équipes en charge des ventes
- Compétences en gestion de produits
- Compétences en finance
- Cours populaires de science des données au Royaume-Uni
- Beliebte Technologiekurse in Deutschland
- Certifications populaires en cybersécurité
- Certifications populaires en informatique
- Certifications SQL populaires
- Guide de carrière de responsable marketing
- Guide de carrière de chef de projet
- Compétences de programmation en Python
- Guide de carrière de développeur Web
- Compétences d'analyste de données
- Compétences pour un concepteur UX

- Certificats MasterTrack®
- Certificats Professionnels
- Certificats d'université
- MBA & diplômes commerciaux
- Diplômes en science des données
- Diplômes en informatique
- Diplômes en analyse des données
- Diplômes de santé publique
- Diplômes en sciences sociales
- Diplômes en gestion
- Diplômes des meilleures universités européennes
- Masters
- Licences
- Diplôme avec un Parcours de performance
- Cours de BSc
- Qu'est-ce qu'une licence ?
- Combien de temps dure un Master ?
- Un MBA en ligne vaut-il le coup ?
- 7 façons de payer ses études supérieures
- Voir tous les certificats