Retour à Mastering Data Analysis in Excel

4.2

étoiles

3,457 évaluations

•

809 avis

Important: The focus of this course is on math - specifically, data-analysis concepts and methods - not on Excel for its own sake. We use Excel to do our calculations, and all math formulas are given as Excel Spreadsheets, but we do not attempt to cover Excel Macros, Visual Basic, Pivot Tables, or other intermediate-to-advanced Excel functionality.
This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits. The two models should demonstrate to you in a practical, hands-on way the idea that your choice of business metric drives your choice of an optimal model.
The second big idea this course seeks to demonstrate is that your data-analysis results cannot and should not aim to eliminate all uncertainty. Your role as a data-analyst is to reduce uncertainty for decision-makers by a financially valuable increment, while quantifying how much uncertainty remains. You will learn to calculate and apply to real-world examples the most important uncertainty measures used in business, including classification error rates, entropy of information, and confidence intervals for linear regression.
All the data you need is provided within the course, all assignments are designed to be done in MS Excel, and you will learn enough Excel to complete all assignments. The course will give you enough practice with Excel to become fluent in its most commonly used business functions, and you’ll be ready to learn any other Excel functionality you might need in the future (module 1).
The course does not cover Visual Basic or Pivot Tables and you will not need them to complete the assignments. All advanced concepts are demonstrated in individual Excel spreadsheet templates that you can use to answer relevant questions. You will emerge with substantial vocabulary and practical knowledge of how to apply business data analysis methods based on binary classification (module 2), information theory and entropy measures (module 3), and linear regression (module 4 and 5), all using no software tools more complex than Excel....

JE

Oct 31, 2015

The course deserves a 5-star rating because: (1) content is relevant, (2) the professor is concise and possesses great teaching skills, and (3) the learning modules are applicable to daily problems.

NC

Dec 20, 2016

Overall, the course material is good with many example. Need a general knowledge with mathematical and statistical from the beginning to pass the exam, because course slide is a little bit fast.

Filtrer par :

par Divya M

•May 13, 2020

Excellent course!

par Pranshu J

•Nov 29, 2015

Extremely helpful

par Raja K P

•Oct 06, 2016

Excellent Course

par Deepak S

•Jul 12, 2017

Good course!

par Tan Y Y

•Feb 03, 2019

Very useful

par Chuang M

•Feb 07, 2016

Good course

par Angel S

•Feb 05, 2016

Very useful

par Felipe P

•Dec 15, 2015

Excelent!

par Jay K P

•Dec 03, 2015

Awesome!!

par Zewei R

•Aug 07, 2019

too hard

par Foo J W

•Jun 17, 2020

tough!!

par Karan S C

•Jan 04, 2016

Love it

par Zhengfeng Y

•May 25, 2016

Go

par GOH L H

•May 29, 2020

In general, the course is fairly rewarding for someone like me who is coming from Engineering, and doesn't major in Business / Analytics.

What I liked: Assessments (Practice Quiz, Quizzes, Final Project) are very much rewarding in a sense that by the end of the assessments, you gain a better understanding on how the topics and concepts taught in the lectures could be applied in a practical sense in the world.

What I disliked:

1. The title of the course is pretty misleading. I signed up hoping to learn more about the technical side of Excel, the analysis parts, but here it seems that the emphasis are more on the relatively abstract analytical concepts, while Excel is merely a tool in the big picture.

2. It gets very frustrating and demotivating when the topics taught are not well-structured. There should be a video in the beginning to show the big picture, and a video at the end to sum up the main concepts and how they relate to each other.

par Jody P

•Nov 08, 2016

Though at the start of the program indicates no prerequisite I would suggest that you be familiar with Algebra and Stats. Most videos are of Dr. Egger writing out algebraic equations and discussing them, the excel component of Mastering data in excel come via pre-made calculators as attachments that you for the most part need to figure out on your own.

If you do not have a good comfort level with stats then you will require more time to spend on understanding the spreadsheet and it’s use.

It would be fantastic if Dr Egger could go through the spreadsheets as a part of the video and show a couple examples, hopefully revisions down the road !

It was challenging but not impossible, and if you do not challenge yourself how much are you really learning?

Best of luck!

par Xu Z

•Nov 27, 2017

Professor Egger is pretty good at explaining concepts and make the class interesting. However, even to someone with solid statistical and math background, the class seems to have a steep learning curve. Concepts and projects can be discussed in more in-depth manner. Many classmates seem to be confused during middle of class. Be prepared to study up and research a lot using google search.

On the other side, I thought that it's an Basic Excel class before staring. Apparently I'm wrong. I picked up a lot of learning on data analytics side and how to use excel to accomplish the analytical goals. This class would be useful to anyone wants to get the exposure.

par Sarah L

•Aug 19, 2019

This course was much to focused on math proofs of statistical reasoning and left the actual instruction in Excel and how to use those formulas for mere supplemental material. The organization of the course left me in tears as I was struggling to understand the math and only THEN was I shown the application of that math to something useful. This is backwards. It needs to focus on the use of excel, not handwritten math formulas and proofs, and teach us the things we actually need to learn for the exam (how to compare 2 models, etc) instead of leaving us googling for the most pertinant information while the professor drones on about greek letters.

par Derek O

•Oct 25, 2017

While I found this course useful, it was originally advertised with the Data Analytics Specialization from Duke University, and it says that you need no previous knowledge to complete the specialization. I found this course VERY challenging and I think it is because of my limited experience in the fields of statistics and calculus. There were many times when vocabulary, formulas, calculations, etc. are mentioned quickly and I felt a little left behind. With some background in business statistics I think this class would be much more effective.

par Markus S

•Nov 20, 2015

Really interesting course and material and a very good instructor. This would be a 5 stars course if it wasn't for the final project. During lessons some concepts of statistics were taken as known (which is okay). However the final project required to utilize a combination of all new learned material on a whole different level of difficulty compared to the preceding quizzes. I did not expect that jump in difficulty and enjoyed the course a lot but the final project just was a struggle.

par Stefano J N

•Apr 29, 2016

The Course is fine, explanations and videos are a bit hard to follow at times.

The final assessment is in my opinion very bad, as it i appears to me quite unrelated to the course it self. The lectures are quite abstract and the exam is a practical application of the concept.

The instructions of the course also aren't very good as you need to do each part of the final project at the end of each week.

I would strongly suggest to not take this course unless you have many spare hours.

par Kristin K

•Feb 27, 2018

The course covers some good topics, but it is not introductory due to the requirement that you have prior knowledge of statistics. I found the lectures got progressively more confusing with few examples of how to apply the knowledge. If you take the time to figure out what is actually being asked and how to do it in the spreadsheets provided you can learn something, but the amount of time wasted hunting for the correct approach to their spreadsheets can be quite frustrating.

par Dhananjay P

•Mar 15, 2016

The class has great concept but it needs a bit more structure and change to hit its full potential.

The Good:-The spreadsheets and exercises along with Quiz material. The project was also very informative.

The Bad:- The video need to better explain how Area Under Curve and how the Credit model make sense. It was not very intuitive and I struggled for over 2 weeks to put the Project together due to this gap.

But a worthwhile class with great potential. I am glad I took it.

par Mohit M

•Jan 04, 2016

Course contents are rather deep which is good and makes it challenging. Explanations could be better and there should be more content on some topics for better understanding. Someone with background in statistics would find this course more useful than on who only has basic knowledge of statistics. Nevertheless, it inspired me to learn from other sources to fill the gaps in my understanding.

par Grant V

•Apr 05, 2017

Leve of difficulty was above my expectations. Moved too fast. Could have been more thorough in applying the content to examples similar to the quiz. Seemed to stick to the bare minimum of what would be required before moving to the quiz. Be transparent with future prospective students that this course absolutely requires knowledge of calculus, probability, and statistics.

par Thao V

•Nov 16, 2015

The course has some valuable information, however course materials and videos are not so helpful. If you already have some knowledge about statistics and excel, it will be a lot easier to follow the instructor's lectures, otherwise I don't feel how a beginner could really follow up on this course. Some topics are run through so quickly that they are confusing to students.

- L'IA pour tous
- Introduction à TensorFlow
- Réseau de neurones et deep learning
- Algorithmes, Partie 1
- Algorithmes, Partie 2
- Apprentissage automatique
- Apprentissage automatique avec Python
- Apprentissage automatique à l'aide de SAS Viya
- La programmation en R
- Intro à la programmation avec Matlab
- Analyse des données avec Python
- Principes de base d'AWS : Going Cloud Native
- Bases de Google Cloud Platform
- Ingénierie de la fiabilité du site
- Parler un anglais professionnel
- La science du bien-être
- Apprendre à apprendre
- Marchés financiers
- Tests d'hypothèses dans la santé publique
- Bases du leadership au quotidien

- Deep Learning
- Le Python pour tous
- Science des données
- Science des données appliquée avec Python
- Bases de la gestion d'entreprise
- Architecture avec Google Cloud Platform
- Ingénierie des données sur Google Cloud Platform
- Excel à MySQL
- Apprentissage automatique avancé
- Mathématiques pour l'apprentissage automatique
- Voiture autonome
- Révolutions Blockchains pour l'entreprise
- Business Analytics
- Compétences Excel pour l'entreprise
- Marketing numérique
- Analyse statistique avec R pour la santé publique
- Bases de l'immunologie
- Anatomie
- Gestion de l'innovation et du design thinking
- Bases de la psychologie positive